
Static Detection of Malicious Code
in Executable Programs ∗

J. Bergeron, M. Debbabi, J. Desharnais,
M. M. Erhioui, Y. Lavoie and N. Tawbi

LSFM Research Group
Département d’informatique

Université Laval
Québec, QC, G1K 7P4, Canada{

Jean.Bergeron, Mourad.Debbabi, Jules.Desharnais,
Mourad.Erhioui, Yvan.Lavoie, Nadia.Tawbi

}
@ift.ulaval.ca

ABSTRACT
In this paper, we propose a new approach for the static de-
tection of malicious code in executable programs. Our ap-
proach rests on a semantic analysis based on behaviour that
even makes possible the detection of unknown malicious code.
This analysis is carried out directly on binary code. Static
analysis offers techniques for predicting properties of the be-
haviour of programs without running them. The static analysis
of a binary executable is achieved in three major steps: con-
struction of an intermediate representation, flow-based anal-
ysis that captures security-oriented program behaviour, and
static verification of critical behaviours against security poli-
cies (model checking).

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—Se-
curity and protection (e.g., firewalls); D.2.4 [Software En-
gineering]: Software/Program Verification—Model checking;
D.4.6 [Operating Systems]: Security and Protection—Inva-
sive software (e.g., viruses, worms, Trojan horses); K.6.5 [Man-
agement of Computing and Information Systems]: Security
and Protection—Invasive software (e.g., viruses, worms, Tro-
jan horses)

General Terms
Security

Keywords
Detection of malicious code, binary code, static analysis, flow-
based analysis, security policies, model checking

1. MOTIVATION AND BACKGROUND
With the advent and the rising popularity of networks, Internet,
intranets and distributed systems, security is becoming one of
the focal points of research. As a matter of fact, more and more
people are concerned with malicious code that could exist in

∗This research is jointly funded by a grant from the Nat-
ural Sciences and Engineering Research Council (NSERC),
Canada and by a research contract from the Defence Research
Establishment (DREV), Valcartier, 2459, Pie XI Nord, Val-
Bélair, QC, Canada, G3J 1X5

software products. Malicious codes are pieces of code that can
affect the secrecy, the integrity, the data and control flow, and
the functionality of a system. Therefore, their detection is a
major concern within the computer science community as well
as within the user community. As malicious code can affect
the data and control flow of a program, static flow analysis
may naturally be helpful as part of the detection process.

In this paper, we address the problem of static detection of
malicious code in binary executables. The reason for targeting
binary executables is that the source code of those programs
where we need to detect malicious code is often not available.
The primary objective of this research initiative is to elaborate
practical methods and tools with robust theoretical foundations
for the static detection of malicious code. The rest of the pa-
per is organized in the following way. Section 2 is devoted
to a comparison of static and dynamic approaches. Section 3
presents our approach to the detection of malices in binary ex-
ecutable code. Section 4 discusses the implementation of our
approach. Finally, a few remarks and a discussion of future
research are ultimately sketched as a conclusion in Section 5.

2. STATIC VS DYNAMIC ANALYSIS
There are two main approaches for the detection of malices :
static analysis and dynamic analysis. Static analysis consists
in examining the code of programs to determine properties
of the dynamic execution of these programs without running
them. This technique has been used extensively in the past by
compiler developers to carry out various analyses and trans-
formations aiming at optimizing the code [10]. Static analysis
is also used in reverse engineering of software systems and
for program understanding [3, 4]. Its use for the detection of
malicious code is fairly recent.

Dynamic analysis mainly consists in monitoring the execution
of a program to detect malicious behaviour.

Static analysis has the following three advantages over dy-
namic analysis:

• Static analysis techniques allow exhaustive analysis, be-
cause they are not bound to a specific execution of a



program and can give guarantees that apply to all exe-
cutions of the program. In contrast, dynamic analysis
techniques only allow examination of behaviours that
correspond to selected test cases.

• A verdict can be given before execution, where it may
be difficult to determine the proper action to take in the
presence of malices.

• There is no run-time overhead.

However, it may be impossible to certify statically that cer-
tain properties hold (e.g., due to undecidability). In this case,
dynamic monitoring may be the only solution.

Thus, static analysis and dynamic analysis are complementary.
Static analysis can be used first, and properties that cannot be
asserted statically can be monitored dynamically.

As mentioned in the introduction, in this paper, we are con-
cerned with static analysis techniques. Not much has been
published about their use for the detection of malicious code.
In [8], the authors propose a method for statically detecting
malicious code in C programs. Their method is based on so-
called tell-tale signs, which are program properties that allow
one to distinguish between malicious and benign programs.
The authors combine the tell-tale sign approach with program
slicing in order to extract from large programs small fragments
that can easily be analyzed.

3. DESCRIPTION OF THE APPROACH
Static analysis techniques are generally used to operate on
source code. However, as we explained in the introduction,
we need to apply them to binary code, and thus, we had to
adapt and evolve these techniques. Our approach is structured
in three major steps: Firstly, the binary code is translated into
an internal intermediate form (see Section 3.1) ; secondly, this
intermediate form is abstracted through flow-based analysis as
various relevant graphs (control-flow graph, data-flow graph,
call graph, critical-API 1 graph, etc.) (Section 3.2); the third
step is the static verification and consists in checking these
graphs against security policies (Section 3.3).

3.1 Intermediate Representation
A binary executable is the machine code version of a high-
level or assembly program that has been compiled (or assem-
bled) and linked for a particular platform and operating sys-
tem. The general format of binary executables varies widely
among operating systems. For example, the Portable Exe-
cutable format (PE) is used by the Windows NT/98/95 operat-
ing system. The PE format includes comprehensive informa-
tion about the different sections of the program that form the
main part of the file, including the following segments:

• .text, which contains the code and the entry point of the
application,

• .data, which contains various types of data,

1API: Application Program Interface.

Binary code

Disassembler IDA32

Parser

Syntax tree

❄

❄

❄

Figure 1: Generating the intermediate representation

• .idata and .edata, which contain respectively the list of
imported and exported APIs for an application or a Dy-
namic-Linking Library (DLL).

The code segment (.text) constitutes the main part of the file;
in fact, this section contains all the code that is to be analyzed.

In order to translate an executable program into an equiva-
lent high-level-language program, we use the disassembly tool
IDA32 Pro [7], which can disassemble various types of exe-
cutable files (ELF, EXE, PE, etc.) for several processors and
operating systems (Windows 98, Windows NT, etc.). Also,
IDA32 automatically recognizes calls to the standard libraries
(i.e., API calls) for a long list of compilers.

Statically analyzing a program requires the construction of the
syntax tree of this program, also called intermediate represen-
tation. The various techniques of static analysis are based on
this abstract representation. The goal of the first step is to dis-
assemble the binary code and then to parse the assembly code
thus generated to produce the syntax tree (Figure 1).

3.2 Flow-based Analysis
The aim of flow-based analysis is to generate informations
about how control and data flow from one program point to
another (Figure 2). The ultimate goal is to obtain an abstrac-
tion of the program behaviour. Control and data flow informa-
tion is extracted from the intermediate form and represented
as control and data-flow graphs.

• A control-flow graph is a directed graph where each
node corresponds to a statement or block of statements
of the program. An edge between two nodes represents
a direct flow of control between them. A control flow-
graph can be intra-procedural or interprocedural. In the
first case, a procedure call is considered as an ordinary
statement and the whole control-flow information con-
sists of a set of control-flow graphs corresponding to the
different procedures without any link between them. In
the second case the control-flow graph links each call
site to the corresponding procedure control-flow graph
and each return to the point following immediately the
call site.



Abstract representation

Control-flow analysis

Call graph builder Control-flow graph
builder

Control-flow graph

Data-flow analysis

Control-flow graph
&

Data-flow graph

API
database✧✦
�✥

❄

❄❄

❄

❄

❄

Figure 2: Flow-based Analysis

• A data-flow graph is a directed graph whose nodes cor-
respond to operations in the program and whose edges
represent various types of information flow between the
nodes. This means that many different types of data-
flow graphs are possible.

In the first step, our control-flow graph generator constructs a
control-flow graph for each procedure, and then it links each
call site to the control-flow graph of the callee by two specific
edges, namely a call edge and a return edge. The call edge
links the call site to the first statement or block of the proce-
dure and the return edge links the exit statement or block of
the procedure to the program point that immediately follows
the call site (see the top graph in Figure 3).

In our implementation, the nodes of the control-flow graph
correspond to basic blocks, which are sequences of statements
such that control starts at the first statement and leaves after
the last statement with no possibility of halting or branching
within the block. Using basic blocks as nodes is more appro-
priate than using single statements, since the number of state-
ments in assembly code tends to be fairly large when compared
to their high-level-language counterpart.

The inter-procedural flow graph is then abstracted in an API-
graph (middle graph in Figure 3). In this graph, all the com-
putation statements are ignored in the control-flow graph and
the statements representing calls to APIs are kept. This API
graph is then abstracted into a critical-API graph call (bottom
graph in Figure 3), in which only calls to APIs that could com-
promise security are represented. The latter graph is then used
in the verification step. Notice that the criticality of an API
depends on the context and the application. This is why our
implementation allows the user to determine the list of APIs
that he or she considers relevant to the verification process. As

an example, if a program reads a file and then sends its con-
tent over the net and if the APIs that access files are the only
relevant APIs, then the critical-API graph shows that a read is
followed by a write and ignores what happens between these
two operations.

Static analysis can yield more precise information if data-flow
information is extracted from the program. The situation de-
picted in the previous example would be considered as dan-
gerous from a security point of view whatever the files read
and sent over the net. A data-flow analysis can tell whether
the data sent over the net actually depends on the information
that is read in the confidential file, making the analysis and the
warning messages more precise. In this case, a superfluous
warning could be avoided if the data sent do not depend on
information extracted from the confidential file. For instance,
no warning is needed in the case of Figure 3, because the crit-
ical file that is read (ConfidFile) is not the one sent over the
network (OtherFile).

By applying data-flow analysis, we can improve the analyz-
ability of the assembly code. For example, if actual parame-
ters and return values for different APIs and library subroutine
calls involved in the program are computed, then it is possi-
ble to determine the kind of information transmitted through
the network. As another example, consider the subroutine at
instruction 2 in Figure 3: by applying data-flow analysis on
registers, the actual parameters and the return value of the sub-
routine can be determined.

In a similar way, we can compute actual parameters for differ-
ent API calls made by the program. The goal of these transfor-
mations is to get an imperative high-level representation which
is more suitable for flow analysis. For example, the block

push var
push esi
push eax
push 0
call send

may be transformed as follows:

call send(var, esi, eax, 0).

3.3 Static Verification
A security policy is a set of rules that characterizes acceptable
or unacceptable executions of a program. It might concern

• access control, and restrict what operations can be per-
formed on objects;

• information flow, and restrict what can be inferred about
objects from the observation of system behaviour;

• availability, and restrict principals from denying others
the use of a resource.

The intent of the third step of our approach is twofold:



0: lea ebx, eax
1: mov ecx, ebx
2: call subA(ecx)
3: test ecx, ecx
4: jz short loc 7
5: call subB(ebx)
6: jmp loc 8

loc 7: mov esi, var3
loc 8: call MessageBox

9: call Send (var1, esi)

subA proc near
varx dword ptr 4

10: Call OpenFile (”security.txt”)
11: mov ebx, eax
12: Call ReadFile (ebx, varx)
13: ret

subB proc near
14: Call RegOpenKey
15: mov ebx, eax
16: Call RegSetValue
17: add edi, eax
18: Call RegCloseKey
19: ret

✲

✲

Figure 3: A fragment of code and its control-flow graph, API graph, and critical-API graph



✲✒✑
�✏
✒✑
�✏

✒✑
�✏

✒✑
�✏
bad✑

�✏
✾

τ

�✏
✒τ ✑

�✏
✾

τ

�✏
✒λ

✻
OpenFile

✲ReadFile

❄
Send

Figure 4: Security automaton

1. Expressing security policies: In our system, security
policies are specified using security automata [11]. The
transitions of these automata are labeled by actions that
can be performed by the system. One of the states is
designated as a bad state and and entry into this state is
a violation of the security policy.

We have chosen security automata because they are very
expressive, able to encode any safety property (the la-
bels of the transitions can be arbitrary computable func-
tions). For example, Figure 4 depicts a security au-
tomaton that enforces the simple policy that programs
must not send anything on the network after reading a
file. Entrance into the bad state indicates that the secu-
rity policy has been violated. In this automaton, τ de-
notes any action other than the relevant actions Open-
File, ReadFile and Send, whereas λ denotes any ac-
tion.

2. Checking malicious behaviour against security policies
(model checking): Once the critical-API graph is com-
puted, it is subjected to verification against the security
policy to statically determine whether it exhibits mali-
cious behaviour or not.

A program is a sequence of instructions that manipulate in-
formation: it creates, destroys, reads or writes information,
computes new information, etc. The access to this informa-
tion is done using the resources of a computer by the inter-
mediary of the APIs of the system. By resources, we mean
the internal memory, discs, files, networks, processes, clocks,
etc. Thus, for example, the API Send is used to send on the
network information from a disc or registry. A malicious pro-
gram is characterized by how it handles critical resources. The
security policy indicates if a combination of accesses to the re-
sources is licit or not.

4. IMPLEMENTATION
We have built a prototype for the static detection of malices
in binary code using the techniques described above. It takes
as input an executable program and a security policy, and pro-
duces a report on the presence or absence of malicious code.
The user has facilities for selecting a list of critical APIs from
the complete list of APIs used in the program. See Figure 6
for a view of the user interface.

As mentioned in Section 3, the process starts with disassem-
bly, using IDA32. The assembler program is then parsed to
produce the syntax tree. The prototype then constructs the

Figure 5: Static verification

control-flow graph for each subroutine by placing basic blocks
on a list and then converting that list to a proper graph. While
parsing, whenever an instruction marking the end of a basic
block is met, the basic block is constructed, and the start and
finish instructions are stored in the list of instructions for that
subroutine. The control-flow graph is then constructed using
standard techniques [1]. The security policy is entered manu-
ally as a list of transitions. Finally, the security policy is com-
pared to the control-flow graph using a variant of Emerson’s
algorithm [5].

As a by-product of this analysis, the tool is also able to detect
dead code, which shows up as a disconnected component in
the control-flow graph.

We have tested our tool on known malicious programs, such
as WINIPX.EXE, produced by the Win32/Semisoft virus [6].
This virus infects only EXE files in the Windows PE format.
It contains specific code to infect NOTEPAD.EXE. The virus
also creates several files containing just the body of the virus;
these are WINIPX.EXE, WINIPXA.EXE, WINSRVC.EXE
and EXPLORE.EXE. When the virus is operating, it sends
information collected from the host machine to a few Inter-
net addresses. analyzing the file WINIPX.EXE easily reveals
that information is sent over the net and that the information
sent comes from files on the disk. Figure 7 shows a zoom on
the control-flow graph of WINIPX.EXE. In this figure, we see
three basic blocks. The sets IN and OUT that appear in these
blocks respectively contain the live registers on entry and exit
of the blocks. The sets DEF and USE associated to a state-
ment respectively contain the variables that are defined and
used by that statement.

5. CONCLUSION
In this paper, we have presented an approach to the static de-
tection of malicious code in executable programs. This is done
in three steps: generating an intermediate representation, ana-
lyzing the control and data flows, and doing static verification.
This last step consists in comparing a security policy to the
output of the analysis phase. We have also briefly described



Data-flow analysis

Critical-Api graph

-

SAMCODE

Figure 6: User interface of the prototype tool



Figure 7: Zoom on a control-flow graph



our prototype tool.

As future work, we plan to

• improve the static verifier to take into account data-flow
information,

• extend the analysis to the DLLs used in the program that
is analyzed,

• make the tool portable on several platforms (e.g., Linux),

• and define a language for inputting security policies.

6. ACKNOWLEDGEMENTS
We thank the anonymous referees for their comments.

7. REFERENCES
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.

Compilers – Principles, Techniques and Tools.
Addison-Wesley, 1986.

[2] Thomas Ball and Susan Horwitz. Slicing programs with
arbitrary control-flow. In Automated and Algorithmic
Debugging, First International Workshop,
AADEBUG’93, volume 749 of LNCS, pages 206–222,
1993.

[3] Christina Cifuentes and K. John Gough. Decompilation
of binary programs. Software - Practice and Experience,
25(7):811–829, July 1995.

[4] Cristina Cifuentes and Antoine Fraboulet.
Intraprocedural static slicing of binary executables. In

Proceedings of the International Conference on
Software Maintenance, Bari, Italy, October 1997, pages
188–195, IEEE-CS Press.

[5] E. M. Clarke, E. A. Emerson, and A. P. Sistla.
Automatic verification of finite-state concurrent systems
using temporal logic specifications. ACM Transactions
on Programming Languages and Systems,
8(2):244–263, 1986.

[6] F-Secure Corporation. Semisoft.
http://www.europe.f-secure.com/
v-descs/net666.htm, 1998.

[7] Ilfak Guilfanov. An advanced interactive
multi-processor disassembler.
http://www.datarescue.com, 2000.

[8] Raymond W. Lo, Karl N. Levitt, and Ronald A. Olsson.
MCF: A Malicious Code Filter. Computers and
Security, 14(6):541–566, 1995.

[9] John P. McDermott and William S. Choi. Taxonomy of
computer program security flaws. ACM Computing
Surveys, 26(3):211–254, 1994.

[10] S. S. Muchnick. Advanced Compiler Design
Implementation. Morgan Kaufman Publishers, San
Francisco, CA, 1997.

[11] Fred B. Schneider. Enforceable security policies. ACM
Transactions on Information and System Security,
3(1):30–50, February 2000. Also Cornell University,
http://cs-tr.cs.cornell.edu:
80/Dienst/UI/1.0/Display/ncstrl.
cornell/TR99-1759, 1998.


